Mapping an intrinsic MR property of gray matter in auditory cortex of living humans: a possible marker for primary cortex and hemispheric differences.

نویسندگان

  • Irina S Sigalovsky
  • Bruce Fischl
  • Jennifer R Melcher
چکیده

Recently, magnetic resonance properties of cerebral gray matter have been spatially mapped--in vivo--over the cortical surface. In one of the first neuroscientific applications of this approach, this study explores what can be learned about auditory cortex in living humans by mapping longitudinal relaxation rate (R1), a property related to myelin content. Gray matter R1 (and thickness) showed repeatable trends, including the following: (1) Regions of high R1 were always found overlapping posteromedial Heschl's gyrus. They also sometimes occurred in planum temporale and never in other parts of the superior temporal lobe. We hypothesize that the high R1 overlapping Heschl's gyrus (which likely indicates dense gray matter myelination) reflects auditory koniocortex (i.e., primary cortex), a heavily myelinated area that shows comparable overlap with the gyrus. High R1 overlapping Heschl's gyrus was identified in every instance suggesting that R1 may ultimately provide a marker for koniocortex in individuals. Such a marker would be significant for auditory neuroimaging, which has no standard means (anatomic or physiologic) for localizing cortical areas in individual subjects. (2) Inter-hemispheric comparisons revealed greater R1 on the left on Heschl's gyrus, planum temporale, superior temporal gyrus and superior temporal sulcus. This asymmetry suggests greater gray matter myelination in left auditory cortex, which may be a substrate for the left hemisphere's specialized processing of speech, language, and rapid acoustic changes. These results indicate that in vivo R1 mapping can provide new insights into the structure of human cortical gray matter and its relation to function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MR imaging of the human brain at 1.5 T: regional variations in transverse relaxation rates in the cerebral cortex.

BACKGROUND AND PURPOSE Heterogeneity in cortical signal intensity on T2-weighted MR images has been recently documented. Using a whole-brain, multiecho MR imaging technique, we sought to determine the T2 relaxation times of nine predefined regions in the cerebral cortex and one region in the deep gray matter. METHODS Ten adult volunteers (nine men and one woman; age range, 18-40 y; average ag...

متن کامل

Increased volume and function of right auditory cortex as a marker for absolute pitch.

Absolute pitch (AP) perception is the auditory ability to effortlessly recognize the pitch of any given tone without external reference. To study the neural substrates of this rare phenomenon, we developed a novel behavioral test, which excludes memory-based interval recognition and permits quantification of AP proficiency independently of relative pitch cues. AP- and non-AP-possessing musician...

متن کامل

Reciprocal anatomical relationship between primary sensory and prefrontal cortices in the human brain.

The human brain exhibits remarkable interindividual variability in cortical architecture. Despite extensive evidence for the behavioral consequences of such anatomical variability in individual cortical regions, it is unclear whether and how different cortical regions covary in morphology. Using a novel approach that combined noninvasive cortical functional mapping with whole-brain voxel-based ...

متن کامل

Histological Basis of Laminar MRI Patterns in High Resolution Images of Fixed Human Auditory Cortex

Functional magnetic resonance imaging (fMRI) studies of the auditory region of the temporal lobe would benefit from the availability of image contrast that allowed direct identification of the primary auditory cortex, as this region cannot be accurately located using gyral landmarks alone. Previous work has suggested that the primary area can be identified in magnetic resonance (MR) images beca...

متن کامل

Differences in brain structure in deaf persons on MR imaging studied with voxel-based morphometry.

BACKGROUND AND PURPOSE The loss of a major sensory input early in life is known to cause alterations in neuronal connectivity and physiology at the cellular level, but effects on gross anatomy are less well understood. The purpose of this study was to compare volumetric structural brain MR imaging scans of deaf versus hearing subjects by using voxel-based morphometry (VBM). The hypothesis was t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 32 4  شماره 

صفحات  -

تاریخ انتشار 2006